Nuprl Definition : disjoint_sublists
11,40
postcript
pdf
disjoint_sublists(
T
;
L1
;
L2
;
L
)
==
f1
:{0..||
L1
||
}
{0..||
L
||
}
==
f2
:{0..||
L2
||
}
{0..||
L
||
}
==
(increasing(
f1
;||
L1
||) & (
j
:{0..||
L1
||
}.
L1
[
j
] =
L
[(
f1
(
j
))])
==
& increasing(
f2
;||
L2
||) & (
j
:{0..||
L2
||
}.
L2
[
j
] =
L
[(
f2
(
j
))])
==
& (
j1
:{0..||
L1
||
},
j2
:{0..||
L2
||
}.
(
f1
(
j1
) =
f2
(
j2
))))
latex
clarification:
disjoint_sublists(
T
;
L1
;
L2
;
L
)
==
f1
:{0..||
L1
||
}
{0..||
L
||
}
==
f2
:{0..||
L2
||
}
{0..||
L
||
}
==
(increasing(
f1
;||
L1
||) & (
j
:{0..||
L1
||
}.
L1
[
j
] =
L
[(
f1
(
j
))]
T
)
==
& increasing(
f2
;||
L2
||) & (
j
:{0..||
L2
||
}.
L2
[
j
] =
L
[(
f2
(
j
))]
T
)
==
& (
j1
:{0..||
L1
||
},
j2
:{0..||
L2
||
}.
(
f1
(
j1
) =
f2
(
j2
)
)))
latex
Definitions
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
P
&
Q
,
increasing(
f
;
k
)
,
l
[
i
]
,
x
:
A
.
B
(
x
)
,
{
i
..
j
}
,
#$n
,
||
as
||
,
A
,
s
=
t
,
,
f
(
a
)
FDL editor aliases
disjoint_sublists
origin